Crystal structure of baculovirus P35: role of a novel reactive site loop in apoptotic caspase inhibition.

نویسندگان

  • A J Fisher
  • W d Cruz
  • S J Zoog
  • C L Schneider
  • P D Friesen
چکیده

The aspartate-specific caspases are critical protease effectors of programmed cell death and consequently represent important targets for apoptotic intervention. Baculovirus P35 is a potent substrate inhibitor of metazoan caspases, a property that accounts for its unique effectiveness in preventing apoptosis in phylogenetically diverse organisms. Here we report the 2.2 A resolution crystal structure of P35, the first structure of a protein inhibitor of the death caspases. The P35 monomer possesses a solvent-exposed loop that projects from the protein's main beta-sheet core and positions the requisite aspartate cleavage site at the loop's apex. Distortion or destabilization of this reactive site loop by site-directed mutagenesis converted P35 to an efficient substrate which, unlike wild-type P35, failed to interact stably with the target caspase or block protease activity. Thus, cleavage alone is insufficient for caspase inhibition. These data are consistent with a new model wherein the P35 reactive site loop participates in a unique multi-step mechanism in which the spatial orientation of the loop with respect to the P35 core determines post-cleavage association and stoichiometric inhibition of target caspases.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reactive-site cleavage residues confer target specificity to baculovirus P49, a dimeric member of the P35 family of caspase inhibitors.

Baculovirus proteins P49 and P35 are potent suppressors of apoptosis in diverse organisms. Although related, P49 and P35 inhibit initiator and effector caspases, respectively, during infection of permissive insect cells. The molecular basis of this novel caspase specificity is unknown. To advance strategies for selective inhibition of the cell death caspases, we investigated biochemical differe...

متن کامل

Identification and functional characterization of AMVp33, a novel homolog of the baculovirus caspase inhibitor p35 found in Amsacta moorei entomopoxvirus.

Members of the baculovirus p35 gene family encode proteins that specifically inhibit caspases, cysteine proteases that are involved in apoptosis. To date, p35 homologs have only been found in baculoviruses. We have identified AMVp33, a gene from Amsacta moorei entomopoxvirus with low but significant homology to baculovirus p35 genes. Expression of AMVp33 blocked apoptosis in several different i...

متن کامل

Mutational analyses of the p35-caspase interaction. A bowstring kinetic model of caspase inhibition by p35.

Apoptosis is a highly regulated multistep process for programmed cellular destruction. It is centered on the activation of a group of intracellular cysteine proteases known as caspases. The baculoviral p35 protein effectively blocks apoptosis through its broad spectrum caspase inhibition. It harbors a caspase recognition sequence within a highly protruding reactive site loop (RSL), which gets c...

متن کامل

Baculovirus apoptotic suppressor P49 is a substrate inhibitor of initiator caspases resistant to P35 in vivo.

Caspases play a critical role in the execution of metazoan apoptosis and are thus attractive therapeutic targets for apoptosis-associated diseases. Here we report that baculovirus P49, a homolog of pancaspase inhibitor P35, prevents apoptosis in invertebrates by inhibiting an initiator caspase that is P35 insensitive. Consequently P49 blocked proteolytic activation of effector caspases at a uni...

متن کامل

Baculovirus inhibitor of apoptosis functions at or upstream of the apoptotic suppressor P35 to prevent programmed cell death.

Members of the inhibitor of apoptosis (iap) gene family prevent programmed cell death induced by multiple signals in diverse organisms, suggesting that they act at a conserved step in the apoptotic pathway. To investigate the molecular mechanism of iap function, we expressed epitope-tagged Op-iap, the prototype viral iap from Orgyia pseudotsugata nuclear polyhedrosis virus, by using novel bacul...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The EMBO journal

دوره 18 8  شماره 

صفحات  -

تاریخ انتشار 1999